A051609 a(n) = (3*n+9)!!!/9!!!, related to A032031 ((3*n)!!! triple factorials).
1, 12, 180, 3240, 68040, 1632960, 44089920, 1322697600, 43649020800, 1571364748800, 61283225203200, 2573895458534400, 115825295634048000, 5559614190434304000, 283540323712149504000, 15311177480456073216000, 872737116385996173312000, 52364226983159770398720000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..377
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(12/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018 -
Maple
restart: G(x):=(1-3*x)^(n-5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
-
Mathematica
With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(12/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(12/3))) \\ G. C. Greubel, Aug 15 2018
Formula
a(n) = ((3*n+9)(!^3))/9(!^3).
E.g.f.: 1/(1-3*x)^4.
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = (n+3)!*3^(n-1)/2.
Sum_{n>=0} 1/a(n) = 162*exp(1/3) - 225. (End)
Comments