cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051621 a(n) = (4*n+9)(!^4)/9(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).

Original entry on oeis.org

1, 13, 221, 4641, 116025, 3364725, 111035925, 4108329225, 168441498225, 7579867420125, 371413503586125, 19684915690064625, 1122040194333683625, 68444451854354701125, 4448889370533055573125, 306973366566780834545625
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(5; m,n) := ((4*n+m)(!^4))/m(!^4), m >= 0, n >= 0.

Crossrefs

Cf. A047053, A007696(n+1), A000407, A034176(n+1), A034177(n+1), A051617-A051622 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(13/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(13/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(13/4))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((4*n+9)(!^4))/9(!^4) = A007696(n+3)/(5*9).
E.g.f.: 1/(1-4*x)^(13/4).