A051638 a(n) = Sum_{k=0..n} (C(n,k) mod 3).
1, 2, 4, 2, 4, 8, 4, 8, 13, 2, 4, 8, 4, 8, 16, 8, 16, 26, 4, 8, 13, 8, 16, 26, 13, 26, 40, 2, 4, 8, 4, 8, 16, 8, 16, 26, 4, 8, 16, 8, 16, 32, 16, 32, 52, 8, 16, 26, 16, 32, 52, 26, 52, 80, 4, 8, 13, 8, 16, 26, 13, 26, 40, 8, 16, 26, 16, 32, 52, 26, 52, 80, 13
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..6561=3^8
- Michael Gilleland, Some Self-Similar Integer Sequences
- A. Granville, Binomials modulo a prime
Crossrefs
Cf. A001316.
Programs
-
Haskell
a051638 = sum . a083093_row -- Reinhard Zumkeller, Jul 11 2013
-
Mathematica
Table[2^(DigitCount[n,3,1]-1) (3^(DigitCount[n,3,2]+1)-1),{n,0,80}] (* Harvey P. Dale, Jun 20 2019 *)
-
Python
from gmpy2 import digits def A051638(n): return 3*3**(s:=digits(n,3)).count('2')-1<
>1 # Chai Wah Wu, Jun 25 2025
Formula
Write n in base 3; if the representation contains r 1's and s 2's then a(n) = 2^{r-1} * (3^(s+1) - 1) = 1/2 * (3*A006047(n) - 2^(A062756(n))). - Robin Chapman, Ahmed Fares (ahmedfares(AT)my-deja.com) and others, Jul 16 2001
a(3n) = a(n), a(3n+1) = 2a(n), a(9n+2) = a(3n+2), a(9n+5) = 2a(3n+2), a(9n+8) = 4a(3n+2) - 3a(n). - David Radcliffe, Jun 25 2025
Comments