cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051647 Primes p such that 210*p + 1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 29, 47, 53, 59, 67, 73, 83, 89, 101, 137, 139, 157, 163, 179, 181, 191, 193, 223, 229, 251, 271, 277, 281, 313, 317, 347, 349, 353, 359, 401, 419, 421, 431, 433, 449, 457, 463, 479, 523, 577, 599, 601, 631, 653, 701, 709, 719, 727
Offset: 1

Views

Author

Keywords

Comments

Analogous to A005384, Sophie Germain primes.
A002110(4)*p + 1 = 210*p + 1 and p are both primes.

Examples

			11 is in the sequence because 210*11 + 1 = 2311 is also prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(900) | IsPrime(210*p+1)]; // Vincenzo Librandi, Apr 11 2013
    
  • Mathematica
    Select[Prime[Range[200]],PrimeQ[210#+1]&]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    isok(k) = isprime(k) && isprime(210*k+1); \\ Amiram Eldar, Feb 24 2025

Formula

a(n) = (A051648(n)-1)/210. - Amiram Eldar, Feb 24 2025

A051902 Minimal primorial safe primes: p and primorial*p + 1 are both primes.

Original entry on oeis.org

5, 13, 61, 421, 4621, 150151, 8678671, 106696591, 2454021571, 71166625531, 401120980261, 170676977100631, 2129751844690471, 562558737261811291, 11682905869181336791, 97767475431570134191, 9613801750771063195351, 234576762718813941966541, 55008250857561869391153631
Offset: 1

Views

Author

Labos Elemer, Dec 16 1999

Keywords

Comments

In A051888, 13 of the first 25 values are distinct, while here all corresponding min-primorial-safe-primes are different: {2,5,17,11,23,43,19,3,7,61,53,41,47}.

Examples

			The first five terms of A051887 are 2, so the first 5 terms have the form 1 + 2*A002110(n): 5, 13, 61, 421, 4621, which are smallest terms in A005385, A051644, A051646, A051648, A051649. The 6th term here is A051651(1) = A051887(6)*A002110(6) + 1 = 5*30030 + 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = 2, r =Times @@ Prime[Range[n]]}, While[!PrimeQ[p * r + 1], p = NextPrime[p]]; p * r + 1]; Array[a, 20] (* Amiram Eldar, Feb 25 2025 *)
  • PARI
    a(n) = {my(p = 2, r = vecprod(primes(n))); while(!isprime(p * r + 1), p = nextprime(p+1)); p * r + 1;} \\ Amiram Eldar, Feb 25 2025

Formula

a(n) = 1 + A002110(n)*A051887(n).
Showing 1-2 of 2 results.