cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051654 Primes p such that 30030*p + 1 is also prime.

Original entry on oeis.org

5, 11, 13, 29, 31, 41, 47, 61, 67, 79, 89, 127, 139, 149, 179, 181, 191, 197, 269, 307, 337, 347, 367, 383, 421, 467, 487, 541, 547, 569, 613, 641, 727, 809, 811, 821, 823, 883, 887, 941, 1031, 1033, 1087, 1093, 1103, 1117, 1193, 1201, 1237, 1259, 1279, 1283
Offset: 1

Views

Author

Keywords

Examples

			p = 5 and 30030*p + 1 = 150151 are both primes.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (1300) | IsPrime(30030*p+1)]; // Vincenzo Librandi, Aug 16 2017
  • Mathematica
    Select[Prime@ Range@ 210, PrimeQ[30030 # + 1] &] (* Michael De Vlieger, Aug 15 2017 *)
  • PARI
    isok(p) = isprime(p) && isprime(30030*p+1); \\ Michel Marcus, Dec 19 2013
    

Formula

a(n) = (A051651(n)-1)/30030. - Amiram Eldar, Feb 24 2025

Extensions

More terms from Michel Marcus, Dec 19 2013

A051902 Minimal primorial safe primes: p and primorial*p + 1 are both primes.

Original entry on oeis.org

5, 13, 61, 421, 4621, 150151, 8678671, 106696591, 2454021571, 71166625531, 401120980261, 170676977100631, 2129751844690471, 562558737261811291, 11682905869181336791, 97767475431570134191, 9613801750771063195351, 234576762718813941966541, 55008250857561869391153631
Offset: 1

Views

Author

Labos Elemer, Dec 16 1999

Keywords

Comments

In A051888, 13 of the first 25 values are distinct, while here all corresponding min-primorial-safe-primes are different: {2,5,17,11,23,43,19,3,7,61,53,41,47}.

Examples

			The first five terms of A051887 are 2, so the first 5 terms have the form 1 + 2*A002110(n): 5, 13, 61, 421, 4621, which are smallest terms in A005385, A051644, A051646, A051648, A051649. The 6th term here is A051651(1) = A051887(6)*A002110(6) + 1 = 5*30030 + 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = 2, r =Times @@ Prime[Range[n]]}, While[!PrimeQ[p * r + 1], p = NextPrime[p]]; p * r + 1]; Array[a, 20] (* Amiram Eldar, Feb 25 2025 *)
  • PARI
    a(n) = {my(p = 2, r = vecprod(primes(n))); while(!isprime(p * r + 1), p = nextprime(p+1)); p * r + 1;} \\ Amiram Eldar, Feb 25 2025

Formula

a(n) = 1 + A002110(n)*A051887(n).
Showing 1-2 of 2 results.