A051687 a(n) = (5*n+6)(!^5)/6, related to A008548 ((5*n+1)(!^5) quintic, or 5-factorials).
1, 11, 176, 3696, 96096, 2978976, 107243136, 4396968576, 202260554496, 10315288279296, 577656143640576, 35237024762075136, 2325643634296958976, 165120698035084087296, 12549173050666390634496
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..353
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-5*x)^(11/5))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018 -
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 5!, 5}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) With[{nn = 30}, CoefficientList[Series[1/(1 - 5*x)^(11/5), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(1/(1-5*x)^(11/5))) \\ G. C. Greubel, Aug 15 2018
Formula
a(n) = ((5*n+6)(!^5))/6(!^5).
E.g.f.: 1/(1-5*x)^(11/5).
Comments