A051730 Distance from A051650(n) to nearest prime.
2, 4, 6, 7, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 30, 31, 32, 33, 34, 35, 36, 40, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109
Offset: 0
Examples
23 is 4 units away from the closest prime (not including itself), so 4 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..211 (calculated from the b-file at A051650)
Crossrefs
Programs
-
Mathematica
(* b stands for A051650 *) d[0] = 2; d[k_] := Min[k - NextPrime[k, -1], NextPrime[k] - k]; b[0] = 0; b[n_] := b[n] = (k = b[n-1] + 1; record = d[b[n-1]]; While[d[k] <= record, k++]; k); a[n_] := a[n] = d[b[n]]; Table[ Print[ a[n]]; a[n], {n, 0, 66}] (* Jean-François Alcover, Jan 16 2012 *)
-
PARI
print1(w=2);p=2;q=3;forprime(r=5,1e9,if(p+w+w
w,w=t;print1(", "t));p=q;q=r) \\ Charles R Greathouse IV, Jan 16 2012
-
UBASIC
[10] C#=pack(3,5):R=2:N=4:print 2; [20] if N>member(C#,2) then C#=pack(member( C#,2)):C#=C#+nxtprm(member(C#,1)) [30] Prv=member(C#,1):Nxt=member(C#,2) [40] if Nxt=N then Nxt=nxtprm(N) [50] if (N-Prv)>=(Nxt-N) then P=Nxt-N else P=N-Prv [60] if P>R then print P;:R=P [70] N+=1 :goto 20
Extensions
More terms from James Sellers, Dec 23 1999 and from Jud McCranie, Jun 16 2000
Further terms from Naohiro Nomoto, Jun 21 2001