cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051745 a(n) = n*(n^4 + 10*n^3 + 35*n^2 + 50*n + 144)/120.

Original entry on oeis.org

2, 8, 24, 60, 131, 258, 469, 800, 1296, 2012, 3014, 4380, 6201, 8582, 11643, 15520, 20366, 26352, 33668, 42524, 53151, 65802, 80753, 98304, 118780, 142532, 169938, 201404, 237365, 278286, 324663, 377024, 435930, 501976, 575792, 658044, 749435, 850706, 962637
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

Keywords

Programs

  • Magma
    [n*(n^4 + 10*n^3 + 35*n^2 + 50*n + 144)/120: n in [1..30]]; // G. C. Greubel, Nov 25 2017
  • Mathematica
    Table[Binomial[n+4,n-1]+Binomial[n,n-1],{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{2,8,24,60,131,258},40] (* Harvey P. Dale, Apr 07 2013 *)
  • PARI
    Vec(x*(x^4-4*x^3+6*x^2-4*x+2)/(x-1)^6 + O(x^100)) \\ Colin Barker, Mar 19 2015
    

Formula

a(n) = binomial(n+4, n-1) + binomial(n, n-1).
a(n) = C(n+4, 5) + n = A000389(n+4) + n.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), with a(1)=2, a(2)=8, a(3)=24, a(4)=60, a(5)=131, a(6)=258. - Harvey P. Dale, Apr 07 2013
G.f.: x*(x^4-4*x^3+6*x^2-4*x+2) / (x-1)^6. - Colin Barker, Mar 19 2015
E.g.f.: x*(240 + 240*x + 120*x^2 + 20*x^3 + x^4)*exp(x)/120. - G. C. Greubel, Nov 25 2017