A051756 Consider the problem of placing N queens on an n X n board so that each queen attacks precisely 3 others. Sequence gives maximal number of queens.
4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 34, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 68, 70, 72, 76, 78, 80, 82, 84, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 112, 114, 116, 118, 120, 124, 126, 128, 130, 132, 136, 138, 140, 142, 144
Offset: 2
Examples
Examples from _R. J. Mathar_, May 01 2006: (Start) ==== n = 3 6 queens: Q Q Q Q - - Q - Q 6 queens: Q Q Q - - - Q Q Q ==== n = 4 8 queens: Q Q Q Q Q - - - Q - - - Q - - Q 8 queens: Q Q Q Q Q - - - - - Q - Q - - Q 8 queens: Q Q Q Q - - - - - - - - Q Q Q Q 8 queens: Q Q - Q - Q - - - - Q - Q - Q Q ==== n = 7 16 queens: Q Q Q - Q - Q - - - - - - Q - - - Q - - - Q - - - - - Q - - - Q - - - Q - - - - - - Q - Q - Q Q Q 16 queens: Q Q Q - - Q Q - - - Q - - - - - - - - - Q Q - - - - - Q Q - - - - - - - - - Q - - - Q Q - - Q Q Q (End)
References
- Martin Gardner, The Last Recreations, Copernicus, NY, 1997, 274-283.
- Peter Hayes, A Problem of Chess Queens, Journal of Recreational Mathematics, Baywood, 24(4), 1992, 264-271.
Links
- Alexander D. Healy, Examples of optimal placements for n <= 61
Crossrefs
Extensions
More terms from Jud McCranie, Aug 12 2001
a(10)-a(61) from Alexander D. Healy, Feb 11 2024
Comments