A051830 a(n) = Fibonacci(p(n)+1) mod p(n), where p(n) is the n-th prime.
0, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1
Offset: 1
Keywords
Examples
p(3) = 5, so a(3) = Fibonacci(5+1) mod 5 = 3.
Programs
-
Mathematica
Table[Mod[Fibonacci[n+1],n],{n,Prime[Range[110]]}] (* Harvey P. Dale, Nov 27 2015 *)
Formula
a(n) = max(0, Legendre(5,prime(n))) for n >= 4, where Legendre is the Legendre symbol. - Haifeng Xu, Jan 31 2025
Comments