cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051830 a(n) = Fibonacci(p(n)+1) mod p(n), where p(n) is the n-th prime.

Original entry on oeis.org

0, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Jud McCranie, Dec 11 1999

Keywords

Comments

Terms are 1 when p(n) == 1 or 4 (mod 5) and 0 when p(n) == 2 or 3 (mod 5).

Examples

			p(3) = 5, so a(3) = Fibonacci(5+1) mod 5 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Fibonacci[n+1],n],{n,Prime[Range[110]]}] (* Harvey P. Dale, Nov 27 2015 *)

Formula

a(n) = max(0, Legendre(5,prime(n))) for n >= 4, where Legendre is the Legendre symbol. - Haifeng Xu, Jan 31 2025