cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051882 Call m strict-sense Egyptian if we can partition m = x_1+x_2+...+x_k into distinct positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives all numbers that are not strict-sense Egyptian.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 33, 34, 35, 36, 39, 40, 41, 42, 44, 46, 47, 48, 49, 51, 56, 58, 63, 68, 70, 72, 77
Offset: 1

Views

Author

Jud McCranie, Dec 15 1999

Keywords

Comments

Lehmer shows that 77 is in this sequence. Graham shows that it is the last member of the sequence.

Examples

			1=1/2+1/3+1/6, so 2+3+6=11 is strict-sense Egyptian.
		

References

  • D. H. Lehmer, unpublished work, cited in Graham 1963.
  • See also R. K. Guy, Unsolved Problems Number Theory, Sect. D11.

Crossrefs

Cf. A028229.

Programs

  • Mathematica
    strictEgyptianQ[m_] := Length[ Select[ IntegerPartitions[m, Ceiling[(Sqrt[8*m + 1] - 1)/2]], Length[#] == Length[ Union[#]] && 1 == Plus @@ (1/#) & , 1]] > 0; Reap[ Do[ If[ !strictEgyptianQ[m], Print[m]; Sow[m]], {m, 1, 77}]][[2, 1]] (* Jean-François Alcover, Jul 30 2012 *)