A051906 Number of ways of placing n nonattacking queens on an n X n toroidal chessboard.
1, 0, 0, 0, 10, 0, 28, 0, 0, 0, 88, 0, 4524, 0, 0, 0, 140692, 0, 820496, 0, 0, 0, 128850048, 0, 1957725000, 0, 0, 0, 605917055356, 0, 13404947681712, 0, 0, 0
Offset: 1
Examples
From _Eduard I. Vatutin_, Nov 27 2023: (Start) n=5 (all 10 solutions are shown below): +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ | Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . | | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . | | . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . | | . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . | | . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q | +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q | | . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . | | . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . | | . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . | | Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . | +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ n=7: +---------------+ | Q . . . . . . | | . . . Q . . . | | . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . | | . . . . Q . . | +---------------+ n=11: +-----------------------+ | Q . . . . . . . . . . | | . . Q . . . . . . . . | | . . . . Q . . . . . . | | . . . . . . Q . . . . | | . . . . . . . . Q . . | | . . . . . . . . . . Q | | . Q . . . . . . . . . | | . . . Q . . . . . . . | | . . . . . Q . . . . . | | . . . . . . . Q . . . | | . . . . . . . . . Q . | +-----------------------+ n=13 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way): +---------------------------+ +---------------------------+ | Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . | | . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . | | . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . | | . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . | | . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . | | . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . | | . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q | | . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . | | . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . | | . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . | | . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . | | . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . | | . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . | +---------------------------+ +---------------------------+ (End)
Links
- M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 62-63.
- Kevin Pratt, Closed-Form Expressions for the n-Queens Problem and Related Problems, arXiv:1609.09585 [cs.DM], 2016.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
Formula
a(n) = A071607((n-1)/2) * n for odd n. - Eduard I. Vatutin, Nov 27 2023, corrected Apr 10 2024
Extensions
Term a(31) added from A007705 by Vaclav Kotesovec, Aug 25 2012
Comments