A051938 Truncated triangular numbers: a(n) = n*(n+1)/2 - 18.
3, 10, 18, 27, 37, 48, 60, 73, 87, 102, 118, 135, 153, 172, 192, 213, 235, 258, 282, 307, 333, 360, 388, 417, 447, 478, 510, 543, 577, 612, 648, 685, 723, 762, 802, 843, 885, 928, 972, 1017, 1063, 1110, 1158, 1207, 1257, 1308, 1360, 1413, 1467, 1522, 1578
Offset: 6
Links
- Colin Barker, Table of n, a(n) for n = 6..1000
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
a(n) = A000217(n) - 18 for n>5.
Cf. A155212. - Vincenzo Librandi, Jan 22 2009
Programs
-
Mathematica
Drop[Accumulate[Range[60]]-18,5] (* Harvey P. Dale, Dec 08 2017 *)
-
PARI
Vec(x^6*(3*x^2-x-3)/(x-1)^3 + O(x^100)) \\ Colin Barker, Mar 18 2015
Formula
a(n) = n + a(n-1) (with a(6)=3). - Vincenzo Librandi, Aug 06 2010
G.f.: x^6*(3*x^2-x-3) / (x-1)^3. - Colin Barker, Mar 18 2015
Sum_{n>=6} 1/a(n) = 4423/6120 + 2*Pi*tan(sqrt(145)*Pi/2)/sqrt(145). - Amiram Eldar, Dec 13 2022
Comments