cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051938 Truncated triangular numbers: a(n) = n*(n+1)/2 - 18.

Original entry on oeis.org

3, 10, 18, 27, 37, 48, 60, 73, 87, 102, 118, 135, 153, 172, 192, 213, 235, 258, 282, 307, 333, 360, 388, 417, 447, 478, 510, 543, 577, 612, 648, 685, 723, 762, 802, 843, 885, 928, 972, 1017, 1063, 1110, 1158, 1207, 1257, 1308, 1360, 1413, 1467, 1522, 1578
Offset: 6

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999

Keywords

Comments

If a 3-set Y and a 3-set Z, having one element in common, are subsets of an n-set X then a(n+2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007

Crossrefs

a(n) = A000217(n) - 18 for n>5.
Cf. A155212. - Vincenzo Librandi, Jan 22 2009

Programs

  • Mathematica
    Drop[Accumulate[Range[60]]-18,5] (* Harvey P. Dale, Dec 08 2017 *)
  • PARI
    Vec(x^6*(3*x^2-x-3)/(x-1)^3 + O(x^100)) \\ Colin Barker, Mar 18 2015

Formula

a(n) = n + a(n-1) (with a(6)=3). - Vincenzo Librandi, Aug 06 2010
G.f.: x^6*(3*x^2-x-3) / (x-1)^3. - Colin Barker, Mar 18 2015
Sum_{n>=6} 1/a(n) = 4423/6120 + 2*Pi*tan(sqrt(145)*Pi/2)/sqrt(145). - Amiram Eldar, Dec 13 2022