A051956 a(n) = smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 and a(1)*a(2)*...*a(n) - 1 are primes.
4, 15, 17, 19, 29, 57, 77, 285, 318, 354, 379, 405, 520, 521, 595, 625, 938, 1706, 1738, 2085, 2345, 2817, 4319, 4529, 7005, 8207, 8232, 9451, 9839, 11044, 11170, 12386, 12421, 12722, 14153, 15220, 15371, 17052, 17965, 18279, 18811, 19890, 21628, 22667, 22746
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..184
Programs
-
Mathematica
a[1] = 4; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, p = Times @@ Array[a, n-1]; If[PrimeQ[k*p+1] && PrimeQ[k*p-1], Print[k]; Return[k]]]; Array[a, 45] (* Jean-François Alcover, Oct 23 2016 *)
-
PARI
lista(nn) = {my (v = vector(nn)); for (n = 1, nn, if (n == 1, p = 1; k = 0; , p = prod(j=1, n-1, v[j]); k = v[n-1]+1); while (! isprime(p*k+1) || ! isprime(p*k-1), k++); v[n] = k; print1(k, ", "););} \\ Michel Marcus, Sep 28 2013
Extensions
More terms from Michel Marcus, Sep 28 2013