cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052038 First nonzero digit in expansion of 1/n.

Original entry on oeis.org

1, 5, 3, 2, 2, 1, 1, 1, 1, 1, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

The number of times each digit occurs for numbers < 10^k:
...\a(n)==1.........2.......3........4........5........6........7........8........9
10^k\
1.........5.........2........1........0........1........0........0........0........0
2........55........19........9........5........5........2........2........1........1
3.......555.......186.......92.......55.......39.......26.......19.......15.......12
4......5555......1853......925......555......373......264......197......154......123
5.....55555.....18520.....9258.....5555.....3707.....2645.....1982.....1543.....1234
6....555556....185187....92591....55555....37041....26454....19839....15432....12345
7...5555555...1851854...925924...555555...370375...264549...198410...154321...123456
8..55555555..18518521..9259257..5555555..3703709..2645501..1984124..1543210..1234567
9.555555555.185185188.92592590.55555555.37037043.26455025.19841266.15432099.12345678
...
Inf. ...5/9......5/27.....5/54.....5/90.....1/27........?........?........?........?

Crossrefs

Programs

  • Mathematica
    f[n_] := RealDigits[1/n, 10, 12][[1, 1]]; Array[f, 105]

Formula

a(n) = floor(10^floor(1+log_10(n-1))/n). After 10^k terms the number of times m will have appeared will be about 10^(k+1)/(9*m*(m+1)), e.g., 1 will appear just over 55.5% of the time. - Henry Bottomley, May 11 2001
a(n) = A000030(floor(A011557(k)/n)) for k >= A004218(n). - Reinhard Zumkeller, Feb 27 2011