A052042 Primes that lack the digit zero in the decimal expansion of their squares.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 59, 61, 67, 73, 79, 83, 89, 107, 109, 113, 127, 131, 137, 139, 157, 163, 167, 173, 181, 191, 193, 211, 223, 227, 229, 233, 239, 263, 269, 271, 277, 281, 293, 307, 311, 313, 337, 359, 367, 373, 379, 383, 389, 409, 419, 421, 431
Offset: 1
Examples
The primes 47, 53 and 71 are not in the sequence because 47^2=2209, 53^2=2809 and 71^2=5041 contain zeros in their decimal representation.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
fQ[n_] := DigitCount[n^2][[-1]] == 0; Select[Prime@ Range@ 80, fQ] (* Robert G. Wilson v, Aug 22 2012 *)
-
PARI
{p=2;for(k=1,10^2,if(vecmin(digits(p^2))>0, print1(p", "));p=nextprime(1+p))}\\ Zak Seidov, Dec 24 2014
Formula
a(n) = sqrt(A052043(n)). - Zak Seidov, Dec 27 2014