A052049 a(n)^2 is a square whose digits occur with an equal minimum frequency of 2.
88, 478, 577, 583, 715, 836, 880, 881, 893, 3362, 3386, 3911, 4077, 4780, 5077, 5239, 5369, 5770, 5784, 5789, 5830, 5858, 6523, 6756, 6772, 6926, 6941, 7107, 7150, 7359, 7535, 7827, 8043, 8196, 8229, 8360, 8525, 8810, 8930, 8989, 9251, 9701, 9764, 9786
Offset: 1
Examples
577^2 = 332929, which contains each of its digits (2, 3, and 9) twice, so 577 is in this sequence.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..5000
- Patrick De Geest, Numbers whose digits occur with same frequency
Programs
-
Maple
isA052049 := proc(n) local d, k, fr, eqfr: d:=convert(n^2, base, 10): eqfr:=true: fr:=numboccur(d[1], d): if(fr=1)then return false: fi: for k from 0 to 9 do if(not member(numboccur(k, d), {fr, 0}))then eqfr:=false: break: fi: od: return eqfr: end: seq(`if`(isA052049(n), n, NULL), n=1..9800); # Nathaniel Johnston, Jun 02 2011
-
Mathematica
ta[n_]:=DeleteDuplicates[Transpose[Tally[IntegerDigits[n^2]]][[2]]]; t ={}; Do[If[Length[x=ta[n]]==1 && x[[1]]>=2, AppendTo[t,n]],{n,9800}]; t (* Jayanta Basu, May 11 2013 *)
Comments