cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052098 Squares whose decimal expansion digits occur with an exact frequency of 4.

Original entry on oeis.org

1001481404808481, 1104154545050041, 1111089088998009, 1188048401014084, 1192212961662969, 1196996001616900, 1241122461466624, 1363116969931396, 1414171674764676, 1575561716675716, 1722919127979721, 1855588212218521
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Last term is 9999888877774166231060453541302412563025. - Giovanni Resta, Mar 21 2013

Crossrefs

A052095 a(n)^2 is a square whose decimal expansion digits occur with an exact frequency of 3.

Original entry on oeis.org

10011, 10110, 10401, 11001, 11010, 14499, 20022, 20220, 22002, 22020, 28998, 31086, 333303, 344514, 354318, 354996, 360096, 367854, 379665, 414189, 442263, 458499, 458610, 460719, 462765, 467997, 470682, 484173, 492489, 518484, 528297
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

For case frequency 2 the first terms correspond to those of sequence A052049.
Last term is 999944387118711. - Giovanni Resta, Mar 21 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[53*10^4],Union[Tally[IntegerDigits[#^2]][[All,2]]]=={3}&] (* Harvey P. Dale, May 05 2018 *)

A052097 a(n)^2 is a square whose decimal expansion digits occur with an exact frequency of 4.

Original entry on oeis.org

31646191, 33228821, 33333003, 34468078, 34528437, 34597630, 35229568, 36920414, 37605474, 39693346, 41508061, 43076539, 43109691, 43485609, 43529521, 44147309, 44294056, 45455649, 45460011, 45460110, 45961010
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Last term is 99999444387327303945. - Giovanni Resta, Mar 21 2013

Examples

			33228821 is in the sequence because 33228821^2 = 1104154545050041, in which each digit is repeated 4 times.
		

Crossrefs

Showing 1-3 of 3 results.