A052167 Primes at which difference pattern X2424Y (X and Y >= 6) occurs in A001223.
1481, 21011, 22271, 55331, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 268811, 326141, 347981, 361211, 397751, 465161, 518801, 536441, 633461, 633791, 661091, 768191, 795791, 829721, 857951, 876011, 958541, 1008851
Offset: 1
Keywords
Examples
21011 is here because 21011+{2,2+4,2+4+2,2+4+2+4}=21011+{1,6,8,12}= {21013,21013,21017,21019,21023} are consecutive primes but the primes in the immediate neighborhood (21001 and 21031) are in distance 10 and 8. Thus the d-pattern "around 21011" is {10,2,4,2,4,12}.
Programs
-
Mathematica
patQ[n_]:=Module[{d=Differences[n]},First[d]>5&&Last[d]>5&&Most[ Rest[d]] == {2,4,2,4}]; Transpose[Select[Partition[Prime[ Range[ 80000]],7,1],patQ]] [[2]] (* Harvey P. Dale, Dec 11 2013 *)