A022008
Initial member of prime sextuples (p, p+4, p+6, p+10, p+12, p+16).
Original entry on oeis.org
7, 97, 16057, 19417, 43777, 1091257, 1615837, 1954357, 2822707, 2839927, 3243337, 3400207, 6005887, 6503587, 7187767, 7641367, 8061997, 8741137, 10526557, 11086837, 11664547, 14520547, 14812867, 14834707, 14856757, 16025827, 16094707, 18916477, 19197247
Offset: 1
n=2: 97, 101, 103, 107, 109, 113 are consecutive primes, while 91, 93, 95 and 115, 117 and 119 are not (cf. 4th comment about the border of composites).
Cf.
A350826 (number of n-digit terms).
-
P:=Filtered([1,3..2*10^7+1],IsPrime);; I:=[4,2,4,2,4];;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
A022008:=List(Positions(List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]),I),j->P[j]); # Muniru A Asiru, Sep 03 2017
-
[p: p in PrimesUpTo(2*10^7) | IsPrime(p+4) and IsPrime(p+6) and IsPrime(p+10)and IsPrime(p+12) and IsPrime(p+16)]; // Vincenzo Librandi, Aug 23 2015
-
for i from 1 to 2*10^5 do if [ithprime(i+1), ithprime(i+2), ithprime(i+3), ithprime(i+4), ithprime(i+5)] = [ithprime(i)+4,ithprime(i)+6,ithprime(i)+10,ithprime(i)+12,ithprime(i)+16] then print(ithprime(i)); fi; od; # Muniru A Asiru, Sep 03 2017
-
lst = {}; Do[p = Prime[n]; If[PrimeQ[p+4] && PrimeQ[p+6] && PrimeQ[p+10] && PrimeQ[p+12] && PrimeQ[p+16], AppendTo[lst, p]], {n, 1000000}]; lst
Transpose[Select[Partition[Prime[Range[10^6]],6,1],Differences[#]=={4,2,4,2,4}&]][[1]] (* Harvey P. Dale, Mar 15 2015 *)
-
p=2;q=3;r=5;s=7;t=11;forprime(u=13,1e9,if(u-p==16 && p%3==1, print1(p", "));p=q;q=r;r=s;s=t;t=u) \\ Charles R Greathouse IV, Mar 29 2013
-
{next_A022008(p, L=Vec(p+1,5), m=210, r=Mod(97,m))=for(i=1,oo, L[i%5+1]+16==(p=nextprime(p+1))&&break; p%m>111 && until(r==p=nextprime((p+8)\/210*210+97),); L[i%5+1]=p); p-16} \\ M. F. Hasler, Jan 18 2022
-
use ntheory ":all"; say for sieve_prime_cluster(1,1e8, 4,6,10,12,16); # Dana Jacobsen, Sep 30 2015
A052165
Primes at which the difference pattern X,2,4,2,Y (X and Y >= 6) occurs in A001223.
Original entry on oeis.org
191, 821, 2081, 3251, 9431, 13001, 15641, 18041, 18911, 25301, 31721, 34841, 51341, 62981, 67211, 69491, 72221, 77261, 81041, 82721, 97841, 99131, 109841, 116531, 119291, 122201, 135461, 157271, 171161, 187631, 194861, 201491, 217361
Offset: 1
191 is here because 191 + 2 = 193, 191 + 4 + 2 = 197, 191 + 2 + 4 + 2 = 199 are primes; the prime preceding 191 is 181; the prime following 199 is 211; and the corresponding differences are 10 and 12. Thus the d-pattern "around 191" is {10,2,4,2,12}.
-
Primes:= select(isprime,[2,seq(i,i=3..10^6,2)]):
Gaps:= Primes[2..-1]-Primes[1..-2]:
Primes[select(t -> Gaps[t] = 2 and Gaps[t+1] = 4 and Gaps[t+2] = 2 and Gaps[t-1] >= 6 and Gaps[t+3]>=6, [$2..nops(Gaps)-3])]; # Robert Israel, Nov 30 2015
-
With[{x = 6, y = 6, s = Partition[#, 6, 1] &@ Prime@ Range[3*10^4]}, Select[s, And[First@ # >= x, Last@ # >= y, Most@ Rest@ # == {2, 4, 2}] &@ Differences@ # &]][[All, 2]] (* Michael De Vlieger, Oct 26 2017 *)
A102332
Initial prime p introducing a prime sextuplet of consecutive primes as follows: {p, p+10, p+18, p+28, p+36, p+46} with the corresponding prime-difference-pattern is {10,8,10,8,10}.
Original entry on oeis.org
37861, 39181, 324763, 692743, 810391, 945331, 1047961, 1429573, 1513573, 1540813, 1799071, 3463573, 3861223, 3979201, 4536121, 4641001, 5154343, 5445403, 5874853, 7851583, 8820793, 8961373, 8976403, 9302113, 9673351, 10323133, 11074033, 11136883, 11899333, 13505983
Offset: 1
Cf.
A001223,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A047078,
A067140,
A067141.
-
tm=TimeUsed[];ta={{0}};Do[g=n;d1=10;d2=8;d3=10;d4=8;d5=10; s1=Prime[n+1]-Prime[n];s2=Prime[n+2]-Prime[n+1]; s3=Prime[n+3]-Prime[n+2];s4=Prime[n+4]-Prime[n+3]; s5=Prime[n+5]-Prime[n+4];If[Equal[s1, d1]&&Equal[s2, d2]&& Equal[s3, d3]&&Equal[s4, d4]&&Equal[s5, d5], Print[{Prime[n], s1, s2, s3, s4, s5}];ta=Append[ta, Prime[n]]], {n, 1, 10000000}] {ta=Delete[ta, 1], {d1, d2}} {g, TimeUsed[]-tm}
Transpose[Select[Partition[Prime[Range[650000]],6,1],Differences[#]=={10,8,10,8,10}&]][[1]] (* Harvey P. Dale, Oct 18 2013 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 10 && p3 - p2 == 8 && p4 - p3 == 10 && p5 - p4 == 8 && p6 - p5 == 10, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ Amiram Eldar, Feb 18 2025
A102333
Initial terms of quartets of consecutive primes as follows: {p, p+16, p+24, p+40}. The corresponding difference-pattern is {16,8,16}.
Original entry on oeis.org
108247, 121507, 166783, 169567, 178207, 216133, 257053, 258763, 272863, 274123, 372613, 383533, 384343, 396157, 413143, 501577, 562477, 577153, 581353, 635293, 721267, 727273, 738937, 769903, 908113, 917713, 932497, 937903, 965467, 980377, 989647, 1008547, 1126537
Offset: 1
Cf.
A001223,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A052378,
A067140,
A067141,
A102332.
-
Transpose[Select[Partition[Prime[Range[78000]],4,1],Differences[#] == {16,8,16}&]][[1]] (* Harvey P. Dale, Mar 18 2012 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5); forprime(p4 = 7, lim, if(p2 - p1 == 16 && p3 - p2 == 8 && p4 - p3 == 16, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4);} \\ Amiram Eldar, Feb 18 2025
A102334
Initial terms of quintuplets of consecutive primes as follows: {p, p+16, p+24, p+40, p+48}. The corresponding difference-pattern is {16,8,16,8}.
Original entry on oeis.org
272863, 274123, 372613, 1394893, 1634293, 2380423, 3846373, 5298523, 5358013, 5797903, 6741913, 7554823, 7647643, 7716103, 7738153, 8241463, 8358283, 9710473, 9859783, 12454333, 12510193, 12796423, 13710133, 14477893, 15162493, 15186583, 15263503, 15603853, 16438243, 16771933, 17913283, 18957973, 19373623
Offset: 1
Cf.
A001223,
A022007,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A052378,
A067140,
A067141,
A102332,
A102333.
-
Select[Partition[Prime[Range[1233300]], 5, 1], Differences[#] == {16, 8, 16, 8} &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 16 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 8, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 18 2025
Missing terms a(1)-a(11) inserted by
Amiram Eldar, Feb 18 2025
A102335
Initial terms of sextuplets of consecutive primes as follows: {p, p+16, p+24, p+40, p+48, p+64}. The corresponding difference-pattern is {16,8,16,8,16}.
Original entry on oeis.org
12454333, 21228553, 25131193, 38589673, 41426353, 46254253, 56564623, 60498133, 61151863, 96691213, 158497153, 169760713, 182960473, 201513133, 226086283, 236031463, 253806913, 290686483, 305472373, 344550643, 369110983, 380973253, 421335883, 445537333, 461955763
Offset: 1
Cf.
A001223,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A052378,
A067140,
A067141,
A102332,
A102333,
A102334.
-
Transpose[Select[Partition[Prime[Range[20000000]],6,1],Differences[#] == {16,8,16,8,16}&]][[1]] (* Harvey P. Dale, Nov 08 2011 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 16 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 8 && p6 - p5 == 16, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ Amiram Eldar, Feb 18 2025
A102331
Initial members of quintuplets (p, p+4, p+12, p+16, p+24) of consecutive primes with the corresponding difference pattern is {4,8,4,8}.
Original entry on oeis.org
13147, 14407, 114757, 132607, 231547, 353317, 459607, 476587, 568987, 601747, 652357, 724627, 794137, 861547, 904777, 1010407, 1094437, 1140847, 1147567, 1170007, 1270417, 1424557, 1441327, 1477027, 1604497, 1646287, 1673377, 2043397, 2078707, 2126767, 2130367
Offset: 1
The prime 13147 is followed by the primes {13151, 13159, 13163, 13171}. Observe that these patterns start and end with primes of the form 10k+7 and 10m+1, respectively.
Cf.
A001223,
A022007,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A102335.
-
Select[Partition[Prime[Range[158000]], 5, 1], Differences[#] == {4, 8, 4, 8} &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 4 && p5 - p4 == 8, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 18 2025
A102336
Initial members of quintuplets (p, p+4, p+12, p+28, p+60) of consecutive primes with the corresponding difference pattern is {4,8,16,32}.
Original entry on oeis.org
1197739, 2496409, 2692549, 2962489, 3195679, 5723479, 6824899, 7706059, 8056039, 8337319, 10132609, 10583269, 11739589, 12167509, 12674659, 13007959, 13699459, 14148049, 14252929, 14702839, 15726019, 16694539, 17115949, 17282299, 17350159, 17584729, 18065389, 18097609
Offset: 1
1197739 is a prime, followed by (1197743, 1197751, 1197767, 1197799) with consecutive prime difference pattern: {4,8,16,32}.
Cf.
A001223,
A022007,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A102331,
A102332,
A102333,
A102334,
A102335.
-
Select[Partition[Prime[Range[10^6]], 5, 1], Differences[#] == 2^Range[2, 5] &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 32, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 18 2025
A102337
Initial members of sextuplets (p, p+4, p+12, p+28, p+60, p+124) of consecutive primes with the corresponding difference pattern is {4,8,16,32,64}.
Original entry on oeis.org
166392559, 337149859, 1356705139, 1455488059, 1879518709, 2339605519, 2410687039, 2811378079, 3191346019, 3250560139, 3442915309, 3573582079, 4873308619, 4875167959, 5362448719, 5524743379, 5580251359, 5716641649, 5783545759, 5977816549, 6019275469, 6076905349
Offset: 1
1455488059 is a prime, followed by consecutive prime difference pattern: {4,8,16,32,64}. The terminal prime is 1455488183.
Cf.
A001223,
A022008,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A102331,
A102332,
A102333,
A102334,
A102335,
A102336.
-
Select[Partition[Prime[Range[3*10^7]], 6, 1], Differences[#] == 2^Range[2, 6] &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 32 && p6 - p5 == 64, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ Amiram Eldar, Feb 18 2025
Showing 1-9 of 9 results.
Comments