A102335
Initial terms of sextuplets of consecutive primes as follows: {p, p+16, p+24, p+40, p+48, p+64}. The corresponding difference-pattern is {16,8,16,8,16}.
Original entry on oeis.org
12454333, 21228553, 25131193, 38589673, 41426353, 46254253, 56564623, 60498133, 61151863, 96691213, 158497153, 169760713, 182960473, 201513133, 226086283, 236031463, 253806913, 290686483, 305472373, 344550643, 369110983, 380973253, 421335883, 445537333, 461955763
Offset: 1
Cf.
A001223,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A052378,
A067140,
A067141,
A102332,
A102333,
A102334.
-
Transpose[Select[Partition[Prime[Range[20000000]],6,1],Differences[#] == {16,8,16,8,16}&]][[1]] (* Harvey P. Dale, Nov 08 2011 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 16 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 8 && p6 - p5 == 16, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ Amiram Eldar, Feb 18 2025
A102336
Initial members of quintuplets (p, p+4, p+12, p+28, p+60) of consecutive primes with the corresponding difference pattern is {4,8,16,32}.
Original entry on oeis.org
1197739, 2496409, 2692549, 2962489, 3195679, 5723479, 6824899, 7706059, 8056039, 8337319, 10132609, 10583269, 11739589, 12167509, 12674659, 13007959, 13699459, 14148049, 14252929, 14702839, 15726019, 16694539, 17115949, 17282299, 17350159, 17584729, 18065389, 18097609
Offset: 1
1197739 is a prime, followed by (1197743, 1197751, 1197767, 1197799) with consecutive prime difference pattern: {4,8,16,32}.
Cf.
A001223,
A022007,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A102331,
A102332,
A102333,
A102334,
A102335.
-
Select[Partition[Prime[Range[10^6]], 5, 1], Differences[#] == 2^Range[2, 5] &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 32, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 18 2025
A102337
Initial members of sextuplets (p, p+4, p+12, p+28, p+60, p+124) of consecutive primes with the corresponding difference pattern is {4,8,16,32,64}.
Original entry on oeis.org
166392559, 337149859, 1356705139, 1455488059, 1879518709, 2339605519, 2410687039, 2811378079, 3191346019, 3250560139, 3442915309, 3573582079, 4873308619, 4875167959, 5362448719, 5524743379, 5580251359, 5716641649, 5783545759, 5977816549, 6019275469, 6076905349
Offset: 1
1455488059 is a prime, followed by consecutive prime difference pattern: {4,8,16,32,64}. The terminal prime is 1455488183.
Cf.
A001223,
A022008,
A022008,
A052162,
A052163,
A052164,
A052165,
A052166,
A052167,
A052168,
A102331,
A102332,
A102333,
A102334,
A102335,
A102336.
-
Select[Partition[Prime[Range[3*10^7]], 6, 1], Differences[#] == 2^Range[2, 6] &][[;;, 1]] (* Amiram Eldar, Feb 18 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 32 && p6 - p5 == 64, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6);} \\ Amiram Eldar, Feb 18 2025
Showing 1-3 of 3 results.
Comments