A052174 Triangle of numbers arising in enumeration of walks on square lattice.
1, 1, 1, 3, 2, 1, 6, 8, 3, 1, 20, 20, 15, 4, 1, 50, 75, 45, 24, 5, 1, 175, 210, 189, 84, 35, 6, 1, 490, 784, 588, 392, 140, 48, 7, 1, 1764, 2352, 2352, 1344, 720, 216, 63, 8, 1, 5292, 8820, 7560, 5760, 2700, 1215, 315, 80, 9, 1
Offset: 0
Examples
First few rows: 1; 1 1; 3 2 1; 6 8 3 1; 20 20 15 4 1; 50 75 45 24 5 1; 175 210 189 84 35 6 1; ...
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Programs
-
Mathematica
c = Binomial; T[n_, m_] /; EvenQ[n-m] := (k = (n-m)/2; c[n+1, k]*c[n, k] - c[n+1, k]*c[n, k-1]); T[n_, m_] /; OddQ[n-m] := (k = (n-m-1)/2; c[n+1, k]*c[n, k+1] - c[n+1, k+1]*c[n, k-1]); Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 13 2015, after Michel Marcus *)
-
PARI
tabl(nn) = {alias(C, binomial); for (n=0, nn, for (k=0, n, if (!((n-k) % 2), kk = (n-k)/2; tnk = C(n+1,kk)*C(n,kk) - C(n+1,kk)*C(n,kk-1), kk = (n-k-1)/2; tnk = C(n+1,kk)*C(n,kk+1) - C(n+1,kk+1)*C(n,kk-1)); print1(tnk, ", ");); print(););} \\ Michel Marcus, Oct 12 2014
Formula
T(n, y) equals C(n+1,k)*C(n,k) - C(n+1,k)*C(n,k-1) if n-y = 2k, else if n-y = 2k+1 equals C(n+1,k)*C(n,k+1) - C(n+1,k+1)*C(n,k-1) (using article notation). - Michel Marcus, Oct 12 2014