A052241 McKay-Thompson series of class 8C for Monster.
1, 26, 79, 326, 755, 2106, 4460, 10284, 20165, 41640, 77352, 147902, 263019, 475516, 816065, 1413142, 2353446, 3936754, 6391091, 10390150, 16497734, 26184098, 40775677, 63394792, 97037170, 148178934, 223351867, 335704742, 499050461, 739575640, 1085723797
Offset: 0
Keywords
Examples
G.f. = 1 + 26*x + 79*x^2 + 326*x^3 + 755*x^4 + 2106*x^5 + 4460*x^6 + ... T8C = 1/q + 26*q^3 + 79*q^7 + 326*q^11 + 755*q^15 + 2106*q^19 + 4460*q^23 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Emails to N. J. A. Sloane, 1993
- Index entries for McKay-Thompson series for Monster simple group
Programs
-
Mathematica
QP = QPochhammer; A = O[q]^40; A = (QP[q + A]/QP[q^2 + A])^12; s = Sqrt[A + 64*(q/A)]; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, adapted from PARI *) eta[q_] := q^(1/24)*QPochhammer[q]; e4D := q^(1/2)*(eta[q]/eta[q^2])^12; T4B := e4D + 64*q/e4D; a[n_]:= SeriesCoefficient[Sqrt[(T4B /. {q -> q^2}) + O[q]^100], {q, 0, n}]; Table[a[n], {n, 0, 50}][[1 ;; ;; 2]] (* G. C. Greubel,Feb 13 2018 *) a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, A}, A = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (A + 64/A)^(1/2), {q, 0, n - 1/4}]]; (* Michael Somos, Sep 30 2019 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( sqrt(A + 64 * x / A), n))}; /* Michael Somos, Sep 01 2014 */
Formula
Expansion of 2 * q^(1/4) * ((k'^4 + 4*k^2) / (k'^2 * k))^(1/2) in powers of q. - Michael Somos, Sep 01 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - (u*v - 12) * (u*v - 32)^2. - Michael Somos, Sep 01 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 01 2014
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/4)*n^(3/4)). - Vaclav Kotesovec, May 01 2017
Comments