cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052241 McKay-Thompson series of class 8C for Monster.

Original entry on oeis.org

1, 26, 79, 326, 755, 2106, 4460, 10284, 20165, 41640, 77352, 147902, 263019, 475516, 816065, 1413142, 2353446, 3936754, 6391091, 10390150, 16497734, 26184098, 40775677, 63394792, 97037170, 148178934, 223351867, 335704742, 499050461, 739575640, 1085723797
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2000

Keywords

Comments

Let q = exp(-Pi*sqrt(58)/4). Then 396 = B(q) = 1/q + 26*q^3 + ... + a(n)*q^(4*n-1) + ... - Michael Somos, Sep 30 2019

Examples

			G.f. = 1 + 26*x + 79*x^2 + 326*x^3 + 755*x^4 + 2106*x^5 + 4460*x^6 + ...
T8C = 1/q + 26*q^3 + 79*q^7 + 326*q^11 + 755*q^15 + 2106*q^19 + 4460*q^23 + ...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; A = O[q]^40; A = (QP[q + A]/QP[q^2 + A])^12; s = Sqrt[A + 64*(q/A)]; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, adapted from PARI *)
    eta[q_] := q^(1/24)*QPochhammer[q]; e4D := q^(1/2)*(eta[q]/eta[q^2])^12;
    T4B := e4D + 64*q/e4D; a[n_]:= SeriesCoefficient[Sqrt[(T4B /. {q -> q^2}) + O[q]^100], {q, 0, n}]; Table[a[n], {n, 0, 50}][[1 ;; ;; 2]] (* G. C. Greubel,Feb 13 2018 *)
    a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, A}, A = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (A + 64/A)^(1/2), {q, 0, n - 1/4}]]; (* Michael Somos, Sep 30 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( sqrt(A + 64 * x / A), n))}; /* Michael Somos, Sep 01 2014 */

Formula

Expansion of 2 * q^(1/4) * ((k'^4 + 4*k^2) / (k'^2 * k))^(1/2) in powers of q. - Michael Somos, Sep 01 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - (u*v - 12) * (u*v - 32)^2. - Michael Somos, Sep 01 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 01 2014
Convolution square is A007247. Convolution fourth power is A007267.
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/4)*n^(3/4)). - Vaclav Kotesovec, May 01 2017