A052249 Triangle T(n,k) (n >= 1, k >= 1) giving dimension of bigrading of Connes-Moscovici noncocommutative algebra.
1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 2, 4, 1, 0, 0, 1, 4, 5, 1, 0, 0, 0, 2, 6, 6, 1, 0, 0, 0, 1, 4, 9, 7, 1, 0, 0, 0, 0, 2, 7, 12, 8, 1, 0, 0, 0, 0, 1, 4, 11, 16, 9, 1, 0, 0, 0, 0, 0, 2, 7, 16, 20, 10, 1, 0, 0, 0, 0, 0, 1, 4, 12, 23, 25, 11, 1, 0, 0, 0, 0, 0, 0, 2, 7, 18, 31, 30, 12, 1, 0, 0
Offset: 0
Examples
Triangle begins 1; 1, 1; 0, 2, 1; 0, 1, 3, 1; 0, 0, 2, 4, 1; 0, 0, 1, 4, 5, 1; ...
Links
- D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees, arXiv:hep-th/0001202, 2000.
Crossrefs
Cf. A052250.
Programs
-
Mathematica
t[n_, k_] := Count[ IntegerPartitions[n], pp_ /; Count[pp, p_ /; p >= 2] == k]; Flatten[ Table[ t[n, k], {n, 1, 14}, {k, n-1, 0, -1} ] ] (* Jean-François Alcover, Jan 23 2012, after David Callan *)
Comments