cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052252 Column 4 of A052250.

Original entry on oeis.org

1, 4, 10, 24, 55, 132, 322, 804, 2051, 5304, 13886, 36716, 97882, 262756, 709658, 1926748, 5255707, 14396048, 39580338, 109190052, 302148814, 838449236, 2332652648, 6505071080, 18180441512, 50914047384, 142853059922, 401517522844, 1130400537667, 3187335556064
Offset: 4

Views

Author

David Broadhurst, Feb 05 2000

Keywords

Comments

Also expansion of 4th power of g.f. for A051573. - Alois P. Heinz, Oct 23 2009

Crossrefs

Cf. A051573, A000081. - Alois P. Heinz, Oct 23 2009

Programs

  • Maple
    with(numtheory): A81:= proc(n) option remember; `if`(n<2, n, (add(add(d*A81(d), d=divisors(j)) *A81(n-j), j=1..n-1))/ (n-1)) end: b:= proc(n) option remember; -`if`(n<0, 1, add(b(n-i) *A81(i+1), i=1..n+1)) end: B:= proc(n) add(b(i) *x^i, i=0..n) end: a:= n-> coeff(B(n)^4, x, n-4): seq(a(n), n=4..35); # Alois P. Heinz, Oct 23 2009
  • Mathematica
    A81[n_] := A81[n] = If[n < 2, n, Sum[Sum[d A81[d], {d, Divisors[j]}] A81[n - j], {j, 1, n - 1}]/(n - 1)];
    b[n_] := b[n] = -If[n < 0, 1, Sum[b[n - i] A81[i + 1], {i, 1, n + 1}]];
    B[n_] := Sum[b[i] x^i, {i, 0, n}];
    T[n_, k_] := Coefficient[B[n]^k, x, n - k];
    a[n_] := T[n, 4];
    a /@ Range[4, 35] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.17246782327675280347707... . - Vaclav Kotesovec, Sep 06 2014

Extensions

More terms from Alois P. Heinz, Oct 23 2009