A052275 Number of distinct 6th powers mod n.
1, 2, 2, 2, 3, 4, 2, 2, 2, 6, 6, 4, 3, 4, 6, 3, 9, 4, 4, 6, 4, 12, 12, 4, 11, 6, 4, 4, 15, 12, 6, 5, 12, 18, 6, 4, 7, 8, 6, 6, 21, 8, 8, 12, 6, 24, 24, 6, 8, 22, 18, 6, 27, 8, 18, 4, 8, 30, 30, 12, 11, 12, 4, 9, 9, 24, 12, 18, 24, 12, 36, 4, 13, 14, 22, 8, 12, 12
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- S. R. Finch and Pascal Sebah, Squares and Cubes Modulo n (arXiv:math.NT/0604465).
- S. Li, On the number of elements with maximal order in the multiplicative group modulo n, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1
Crossrefs
Programs
-
Maple
A052275 := proc(m) {seq( modp(b^6,m),b=0..m-1) }; nops(%) ; end proc: seq(A052275(m),m=1..100) ; # R. J. Mathar, Sep 22 2017
-
Mathematica
Length[Union[#]]&/@Table[PowerMod[k,6,n],{n,100},{k,n}] (* Zak Seidov, Feb 17 2013 *)
-
PARI
a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^6%k), , 8)) \\ Charles R Greathouse IV, Sep 05 2013
Formula
Conjecture: a(2^n) = 1,2,2,2,3,5,9,18,... with g.f. ( 1-2*x^2-2*x^3-x^4-x^5-2*x^6 ) / ( (x-1)*(2*x-1)*(1+x)*(1+x+x^2)*(x^2-x+1) ). - R. J. Mathar, Sep 28 2017
Conjecture: a(3^n) = 1,2,2,4,10,28,82,.... with g.f. ( 1-x-4*x^2-2*x^3-2*x^4-2*x^5-3*x^6 ) / ( (x-1)*(3*x-1)*(1+x)*(x^2-x+1)*(1+x+x^2) ). - R. J. Mathar, Sep 28 2017
Comments