A052294 Pernicious numbers: numbers with a prime number of 1's in their binary expansion.
3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 47, 48, 49, 50, 52, 55, 56, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 79, 80, 81, 82, 84, 87, 88, 91, 93, 94, 96, 97, 98, 100
Offset: 1
Examples
26 is in the sequence because the binary expansion of 26 is 11010 and 11010 has three 1's and 3 is prime, so the number of 1's in the binary expansion of 26 is prime. - _Omar E. Pol_, Apr 04 2016
Links
- Iain Fox, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, terms 1001..4000 from Daniel Arribas)
- Rosetta Code, Pernicious numbers
Programs
-
Haskell
a052294 n = a052294_list !! (n-1) a052294_list = filter ((== 1) . a010051 . a000120) [1..] -- Reinhard Zumkeller, Nov 16 2012
-
Maple
filter:= n -> isprime(convert(convert(n,base,2),`+`)): select(filter, [$1..1000]); # Robert Israel, Oct 19 2014
-
Mathematica
Select[Range[6! ],PrimeQ[DigitCount[ #,2][[1]]]&] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2010 *)
-
PARI
is(n)=isprime(hammingweight(n)) \\ Charles R Greathouse IV, Mar 22 2013
-
Python
from sympy import isprime def ok(n): return isprime(bin(n).count("1")) print([k for k in range(101) if ok(k)]) # Michael S. Branicky, Jun 16 2022
-
Python
from sympy import isprime def ok(n): return isprime(n.bit_count()) print([k for k in range(101) if ok(k)]) # Michael S. Branicky, Dec 27 2023
Comments