A052296 Triangle read by rows: T(n,k) = number of labeled digraphs with n nodes and k arcs and without directed paths of length >=2, with 0 <= k <= floor(n^2/4).
1, 1, 1, 2, 1, 6, 6, 1, 12, 36, 32, 6, 1, 20, 120, 280, 280, 120, 20, 1, 30, 300, 1320, 2910, 3492, 2400, 960, 210, 20, 1, 42, 630, 4480, 17220, 39144, 56294, 53760, 35070, 15680, 4662, 840, 70, 1, 56, 1176, 12320, 73220, 269136, 654304, 1108928, 1362900
Offset: 0
Examples
1; 1; 1, 2; 1, 6, 6; 1, 12, 36, 32, 6; 1, 20, 120, 280, 280, 120, 20; 1, 30, 300, 1320, 2910, 3492, 2400, 960, 210, 20; ...
Programs
-
Maple
A052296 := proc(n,k) local x,l ; add(binomial(n,l)*((1+x)^l-1)^(n-l),l=0..n) ; expand(%) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Mar 16 2021
Formula
G.f. for n-th row: Sum_{k=0..n} binomial(n, k)*((1+x)^k-1)^(n-k). - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum_{n>=0} exp(y*((1+x)^n-1))*y^n/n!. - Vladeta Jovovic, May 28 2004
T(n,3) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n+4)/6, n>=4. - R. J. Mathar, Mar 16 2021