cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052296 Triangle read by rows: T(n,k) = number of labeled digraphs with n nodes and k arcs and without directed paths of length >=2, with 0 <= k <= floor(n^2/4).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 6, 1, 12, 36, 32, 6, 1, 20, 120, 280, 280, 120, 20, 1, 30, 300, 1320, 2910, 3492, 2400, 960, 210, 20, 1, 42, 630, 4480, 17220, 39144, 56294, 53760, 35070, 15680, 4662, 840, 70, 1, 56, 1176, 12320, 73220, 269136, 654304, 1108928, 1362900
Offset: 0

Views

Author

Vladeta Jovovic, Feb 08 2000

Keywords

Examples

			  1;
  1;
  1,  2;
  1,  6,   6;
  1, 12,  36,   32,    6;
  1, 20, 120,  280,  280,  120,   20;
  1, 30, 300, 1320, 2910, 3492, 2400, 960, 210, 20;
  ...
		

Crossrefs

Row sums give A001831.
Cf. A002378 (k=1), A083374 (k=2).

Programs

  • Maple
    A052296 := proc(n,k)
        local x,l ;
        add(binomial(n,l)*((1+x)^l-1)^(n-l),l=0..n) ;
        expand(%) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Mar 16 2021

Formula

G.f. for n-th row: Sum_{k=0..n} binomial(n, k)*((1+x)^k-1)^(n-k). - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum_{n>=0} exp(y*((1+x)^n-1))*y^n/n!. - Vladeta Jovovic, May 28 2004
T(n,3) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n+4)/6, n>=4. - R. J. Mathar, Mar 16 2021