A052301 Number of asymmetric rooted Greg trees.
1, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100, 6097575361683, 23207825593664, 88512641860558
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<1, 1, b(n-1$2)) +b(n, n-1): seq(a(n), n=1..40); # Alois P. Heinz, Jul 06 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<1, 1, b[n-1, n-1]] + b[n, n-1]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
Formula
Satisfies a = WEIGH(a) + SHIFT_RIGHT(WEIGH(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 4.0278584853545190803008179085023154..., c = 0.14959176868229550510957320468... . - Vaclav Kotesovec, Sep 12 2014
Comments