cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052335 Number of partitions of n into at most 1 copy of 1, 2 copies of 2, 3 copies of 3, ... .

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 22, 28, 36, 46, 58, 73, 91, 114, 141, 173, 213, 261, 318, 387, 469, 567, 683, 821, 984, 1176, 1403, 1671, 1984, 2351, 2781, 3284, 3869, 4550, 5343, 6264, 7330, 8565, 9993, 11642, 13543, 15733, 18252, 21148, 24471, 28282, 32646, 37640, 43348, 49867, 57302, 65776, 75426, 86405, 98882
Offset: 0

Views

Author

Christian G. Bower, Dec 19 1999

Keywords

Comments

Also number of partitions into non-pronic numbers (cannot be written as i*(i+1)).
Convolution of A024940 and A225044. - Vaclav Kotesovec, Jan 02 2017

Examples

			a(5)=4 because we have [5], [4,1], [3,2] and [2,2,1] ([3,1,1], [2,1,1,1] and [1,1,1,1,1] do not qualify).
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^(j*(j+1)))/(1-x^j),j=1..53): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..49); # Emeric Deutsch, Mar 04 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(issqr(4*d+1), 0, d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    CoefficientList[Series[Product[Sum[x^(i j ), {i, 0, j}], {j, 1, 49}], {x, 0, 49}], x]
    (* Second program: *)
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[IntegerQ @ Sqrt[4*d+1], 0, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 30 2017, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N); Vec( prod(n=1,N, sum(k=0,n,q^(k*n)) ) ) \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: Product_{i>=1} (1-x^(i*(i+1)))/(1-x^i).
G.f.: (1+x) * (1+x^2+x^4) * (1+x^3+x^6+x^9) * (1+x^4+x^8+x^12+x^16) * ... (g.f. above, expanded). - Joerg Arndt, Apr 01 2014
G.f.: Product_{n>=1} (1 - q^(n*(n+1))) / Product_{n>=1} (1 - q^n). - Joerg Arndt, Apr 01 2014
a(n) = p(n,1,1) with p(n,t,k) = if t<0 then 0 else if k<=n then p(n-k,t-1,k)+p(n,k+1,k+1) else 0^n. - Reinhard Zumkeller, Jan 20 2010
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) / sqrt(2*n). - Vaclav Kotesovec, Jan 01 2017