cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052337 Number of partitions into at most a(1) copies of 1, a(2) copies of 2, ...

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 746, 883, 1044, 1231, 1449, 1703, 1997, 2338, 2734, 3190, 3718, 4325, 5025, 5830, 6754, 7816, 9032, 10422, 12016, 13832, 15907, 18274
Offset: 0

Views

Author

Christian G. Bower, Dec 19 1999

Keywords

Crossrefs

Cf. A289501.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1), j=0..min(n/i, a(i)))))
        end:
    a:= n-> `if`(n=0, 0, 1)+b(n, n-1):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 12 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1], {j, 0, Min[n/i, a[i]]}]]];
    a[n_] := If[n == 0, 0, 1] + b[n, n - 1];
    a /@ Range[0, 70] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)

Formula

E.g.f. satisfies A(x) = Product_{i>=1} (1-x^(a(i)*(i+1)))/(1-x^i).