A052337 Number of partitions into at most a(1) copies of 1, a(2) copies of 2, ...
1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 746, 883, 1044, 1231, 1449, 1703, 1997, 2338, 2734, 3190, 3718, 4325, 5025, 5830, 6754, 7816, 9032, 10422, 12016, 13832, 15907, 18274
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A289501.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=0..min(n/i, a(i))))) end: a:= n-> `if`(n=0, 0, 1)+b(n, n-1): seq(a(n), n=0..70); # Alois P. Heinz, Jun 12 2018
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1], {j, 0, Min[n/i, a[i]]}]]]; a[n_] := If[n == 0, 0, 1] + b[n, n - 1]; a /@ Range[0, 70] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
Formula
E.g.f. satisfies A(x) = Product_{i>=1} (1-x^(a(i)*(i+1)))/(1-x^i).