A289501
Number of enriched p-trees of weight n.
Original entry on oeis.org
1, 1, 2, 4, 12, 32, 112, 352, 1296, 4448, 16640, 59968, 231168, 856960, 3334400, 12679424, 49991424, 192890880, 767229952, 2998427648, 12015527936, 47438950400, 191117033472, 760625733632, 3082675150848, 12346305839104, 50223511928832, 202359539335168
Offset: 0
The a(4) = 12 enriched p-trees are:
4,
(31), ((21)1), (((11)1)1), ((111)1),
(22), (2(11)), ((11)2), ((11)(11)),
(211), ((11)11),
(1111).
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
end:
a:= n-> `if`(n=0, 1, 1+b(n, n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 07 2017
-
a[n_]:=a[n]=1+Sum[Times@@a/@y,{y,Rest[IntegerPartitions[n]]}];
Array[a,20]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1,
If[i<1, 0, b[n, i-1] + a[i] b[n-i, Min[n-i, i]]]];
a[n_] := If[n == 0, 1, 1 + b[n, n-1]];
a /@ Range[0, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018
A387178
Number of integer partitions of n whose parts have choosable sets of strict integer partitions.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 745, 882, 1043, 1229, 1447, 1700, 1993, 2333, 2727, 3182, 3707, 4311, 5008, 5808, 6727, 7782, 8990, 10371, 11952, 13756, 15815, 18161
Offset: 0
The partition y = (3,3,2) has sets of strict integer partitions ({(2,1),(3)},{(2,1),(3)},{(2)}), and we have the choice ((2,1),(3),(2)) or ((3),(2,1),(2)), so y is counted under a(8).
The a(1) = 1 through a(9) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (3,3) (4,3) (4,4) (5,4)
(4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,3,1) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,3,1) (4,4,1)
(5,2,1) (5,3,1)
(6,2,1)
(3,3,2,1)
For initial intervals instead of strict partitions we have
A238873, ranks
A387112.
For divisors instead of strict partitions we have
A239312, ranks
A368110.
For prime factors instead of strict partitions we have
A370592, ranks
A368100.
These partitions are ranked by
A387177.
For all partitions instead of just strict partitions we have
A387328, ranks
A387576.
For constant partitions instead of strict partitions we have
A387330, ranks
A387181.
A358914 counts twice-partitions into distinct strict partitions.
-
strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n],Select[Tuples[strptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
A387328
Number of integer partitions of n whose parts have choosable sets of integer partitions.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 22, 28, 36, 46, 58, 73, 91, 114, 141, 174, 214, 262, 320, 389, 472, 571, 688, 828, 993, 1189, 1419, 1690, 2009, 2383, 2821, 3334, 3931, 4628, 5439, 6381, 7474, 8741, 10207, 11902, 13858, 16114, 18710, 21698, 25130, 29070
Offset: 0
The a(1) = 1 through a(9) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (322) (71) (81)
(331) (332) (333)
(421) (422) (432)
(431) (441)
(521) (522)
(3221) (531)
(621)
(3321)
(4221)
For initial intervals instead of partitions we have
A238873, complement
A387118.
For divisors instead of partitions we have
A239312, complement
A370320.
For prime factors instead of partitions we have
A370592, ranks
A368100.
These partitions are ranked by
A387576.
-
Table[Length[Select[IntegerPartitions[n],Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]!={}&]],{n,0,15}]
Showing 1-3 of 3 results.
Comments