cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052365 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 24, 51, 114, 219, 424, 768, 1352, 2278, 3759, 5978, 9328, 14181, 21164, 30943, 44560, 63063, 88088, 121321, 165152, 222157, 295857, 389948, 509456, 659697, 847552, 1080452, 1367814, 1719652, 2148596, 2668107, 3294676, 4046069
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Comments

Also Molien series for group of structure S_3 X S_3 = (Z_3 X Z_3).O_2^+(3) and order 36, corresponding to complete weight enumerators of Hermitian self-dual GF(3)-linear codes over GF(9) containing the all-ones vector.

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    a[n_] := M[3, 3, n];
    a /@ Range[0, 40] (* Jean-François Alcover, Sep 03 2019, after Andrew Howroyd in A318795 *)

Formula

G.f.: -(x^10+2*x^8+x^7+7*x^6-3*x^5+4*x^3+x^2-2*x+1) / ((x^4-x^3+x-1)*(x^3-1)^3*(x+1)^3*(x-1)^5).
Another form for g.f.: u1/u2, where u1 := 1 + x + 2*x^3 + 10*x^4 + 17*x^5 + 19*x^6 + 20*x^7 + 29*x^8 + 37*x^9 + 34*x^10 + 23*x^11 + 12*x^12 + 7*x^13 + 3*x^14 + x^15 u2 := (1-x^2)^4*(1-x^3)^4*(1-x^6);