A052365 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, under row and column permutations.
1, 1, 4, 10, 24, 51, 114, 219, 424, 768, 1352, 2278, 3759, 5978, 9328, 14181, 21164, 30943, 44560, 63063, 88088, 121321, 165152, 222157, 295857, 389948, 509456, 659697, 847552, 1080452, 1367814, 1719652, 2148596, 2668107, 3294676, 4046069
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Index entries for Molien series
Programs
-
Mathematica
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}]; M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)]; a[n_] := M[3, 3, n]; a /@ Range[0, 40] (* Jean-François Alcover, Sep 03 2019, after Andrew Howroyd in A318795 *)
Formula
G.f.: -(x^10+2*x^8+x^7+7*x^6-3*x^5+4*x^3+x^2-2*x+1) / ((x^4-x^3+x-1)*(x^3-1)^3*(x+1)^3*(x-1)^5).
Another form for g.f.: u1/u2, where u1 := 1 + x + 2*x^3 + 10*x^4 + 17*x^5 + 19*x^6 + 20*x^7 + 29*x^8 + 37*x^9 + 34*x^10 + 23*x^11 + 12*x^12 + 7*x^13 + 3*x^14 + x^15 u2 := (1-x^2)^4*(1-x^3)^4*(1-x^6);
Comments