cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052371 Triangle T(n,k) of n X n binary matrices with k=0...n^2 ones up to row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 6, 7, 7, 6, 3, 1, 1, 1, 1, 3, 6, 16, 21, 39, 44, 55, 44, 39, 21, 16, 6, 3, 1, 1, 1, 1, 3, 6, 16, 34, 69, 130, 234, 367, 527, 669, 755, 755, 669, 527, 367, 234, 130, 69, 34, 16, 6, 3, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 3, 1, 1;
  1, 1, 3, 6, 7, 7, 6, 3, 1, 1;
  1, 1, 3, 6, 16, 21, 39, 44, 55, 44, 39, 21, 16, 6, 3, 1, 1;
  ...
(the last block giving the numbers of 4 X 4 binary matrices with k=0..16 ones up to row and column permutations).
		

Crossrefs

Rows 6..8 are A052370, A053304, A053305.
Row sums are A002724.
Cf. A049311.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, t, i, k = 0}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_, q_] := Product[(1 + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {i, 1, Length[p]}, {j, 1, Length[q]}];
    row[n_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q], {q, IntegerPartitions[n]}], {p, IntegerPartitions[n]}]; CoefficientList[ s/(n!^2), x]]
    row /@ Range[0, 5] // Flatten (* Jean-François Alcover, Sep 22 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    c(p, q)={prod(i=1, #p, prod(j=1, #q, (1 + x^lcm(p[i], q[j]))^gcd(p[i], q[j])))}
    row(n)={my(s=0); forpart(p=n, forpart(q=n, s+=permcount(p) * permcount(q) * c(p, q))); Vec(s/(n!^2))}
    for(n=1, 5, print(row(n))) \\ Andrew Howroyd, Nov 14 2018

Extensions

a(0)=1 prepended by Andrew Howroyd, Nov 14 2018