A052388 Number of 4 X n binary matrices such that any 2 rows have a common 1, up to column permutations.
0, 1, 16, 146, 955, 4905, 20907, 76851, 250530, 739612, 2009177, 5085119, 12109526, 27348478, 58955082, 121956402, 243172488, 469115187, 878387366, 1600751976, 2845918041, 4946262815, 8419256605, 14057377245, 23055913530, 37192403430, 59075703351, 92488040301
Offset: 0
References
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
Programs
-
Magma
[n*(n+1)*(n+2)*(n+3)*(n+4)*(n^10 +110*n^9 +5445*n^8 +160050*n^7 +2906463*n^6 +30644250*n^5 +176659055*n^4 +711220750*n^3 +1781493036*n^2 +4034382840*n +4159814400)/1307674368000: n in [0..25]]; // G. C. Greubel, Oct 07 2017
-
Mathematica
CoefficientList[Series[-x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16, {x, 0, 50}], x] (* G. C. Greubel, Oct 07 2017 *)
-
PARI
x='x+O('x^50); concat([0], Vec(-x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16)) \\ G. C. Greubel, Oct 07 2017
Formula
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n^10 +110*n^9 +5445*n^8 +160050*n^7 +2906463*n^6 +30644250*n^5 +176659055*n^4 +711220750*n^3 +1781493036*n^2 +4034382840*n +4159814400)/1307674368000.
G.f.: -x*(x^10 -5*x^9 +10*x^8 -14*x^7 +21*x^6 -19*x^5 -5*x^4 +21*x^3 -10*x^2 -1)/(x-1)^16. - Colin Barker, Nov 05 2012