cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052390 Number of 4-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.

Original entry on oeis.org

1, 7, 71, 956, 15116, 254397, 4318511, 72331966, 1188180386, 19152566087, 303768582701, 4755204310776, 73675434833456, 1132450098258577, 17301032324486891, 263098797953058386, 3987051131522775326
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Mar 11 2000

Keywords

Crossrefs

Programs

  • Magma
    [(15^n - 6*11^n + 12*9^n - 8^n - 10*7^n + 15*6^n - 24*5^n + 19*4^n + 5*3^n - 11*2^n + 6)/24: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(15^n - 6*11^n + 12*9^n - 8^n - 10*7^n + 15*6^n - 24*5^n + 19*4^n + 5*3^n - 11*2^n + 6)/4!, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=1,50, print1((15^n - 6*11^n + 12*9^n - 8^n - 10*7^n + 15*6^n - 24*5^n + 19*4^n + 5*3^n - 11*2^n + 6)/4!, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (15^n - 6*11^n + 12*9^n - 8^n - 10*7^n + 15*6^n - 24*5^n + 19*4^n + 5*3^n - 11*2^n + 6)/4!.
G.f.: -x * (14968800*x^10 - 34931250*x^9 + 36757686*x^8 - 21625925*x^7 + 7809481*x^6 - 1821016*x^5 + 279853*x^4 - 28145*x^3 + 1779*x^2 - 64*x + 1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(11*x-1)*(15*x-1)). - Colin Barker, Jul 30 2012