cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052393 Number of unlabeled ternary cacti having n triangles.

Original entry on oeis.org

1, 1, 3, 6, 19, 57, 258, 1110, 5475, 27429, 143379, 764970, 4173906, 23140816, 130205922, 741650802, 4270593219, 24825326199, 145535320383, 859627488966, 5112006997539, 30586307211945, 184023410798910, 1112800162657902, 6760426635625170
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A303912.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[3*n, n]/(2*n+1) + DivisorSum[n, Binomial[ 3*#, #]*EulerPhi[n/#]*Boole[# < n]&])/n]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(3*d, d))/n - 2*binomial(3*n, n)/(2*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(3*d, d)) - 2*binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * 2^(2*n + 2) * n^(5/2)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Jean-François Alcover, Jul 17 2017