A052434 Nearest integer to R(n) - pi(n), where R(x) is the Riemann prime counting function.
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0
Offset: 2
Keywords
Examples
a(13) = 0 because R(13) = 5.504 and pi(13) = 6.
Links
- Harry J. Smith, Table of n, a(n) for n = 2..10000
- H. J. Smith, XPCalc - Extra Precision Floating-Point Calculator [Broken link]
- Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
Programs
-
XPCalc
a=Round(Ri(n)-Pi(n)) - Harry J. Smith, Dec 31 2008
Extensions
Corrected 6 terms, a(2), a(7), a(10), a(13), a(20) and a(48). Each was made 1 larger. Also gave an example for a(13) and a program for computing a(n). - Harry J. Smith, Dec 31 2008
Comments