cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052471 Number of noncaterpillar trees on n nodes (A000055-A005418).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 11, 34, 99, 279, 773, 2103, 5661, 15160, 40373, 107355, 285059, 757273, 2013177, 5361100, 14303274, 38250297, 102538714, 275597098, 742674804, 2006661720, 5436008057, 14763754746, 40196603110, 109703958381, 300091975184, 822705857129
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> b(n) -(add(b(k) *b(n-k), k=0..n)-`if`(irem(n, 2)=0,
            b(n/2), 0))/2 -ceil(2^(n-4) + 2^(iquo(n-2, 2)-1)):
    seq(a(n), n=1..40); # Alois P. Heinz, May 18 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}])/(n-1)]; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2 - Ceiling[2^(n-4) + 2^(Quotient[n-2, 2] - 1)]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)

Extensions

a(14) and up from Eric W. Weisstein, Jul 17 2004.