cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052473 a(n) = binomial(2*n-5,n-2) + 2.

Original entry on oeis.org

2, 2, 3, 3, 5, 12, 37, 128, 464, 1718, 6437, 24312, 92380, 352718, 1352080, 5200302, 20058302, 77558762, 300540197, 1166803112, 4537567652, 17672631902, 68923264412, 269128937222, 1052049481862, 4116715363802, 16123801841552
Offset: 0

Views

Author

Keywords

Comments

The best upper bound known for the Erdős-Szekeres problem for n >= 6.

Programs

  • GAP
    List([0..30], n-> 2+Binomial(2*n-5, n-2)); # G. C. Greubel, May 18 2019
  • Magma
    [2 +Binomial(2*n-5,n-2): n in [0..30]]; // G. C. Greubel, May 18 2019
    
  • Maple
    seq( binomial(2*n-5,n-2) + 2,n=0..40); # Robert Israel, May 19 2019
  • Mathematica
    Table[Binomial[2n-5, n-2] + 2, {n, 0, 30}]
  • PARI
    a(n)=binomial(2*n-5,n-2)+2 \\ Charles R Greathouse IV, Jul 29 2011
    
  • SageMath
    [2 +binomial(2*n-5, n-2) for n in (0..30)] # G. C. Greubel, May 18 2019
    

Formula

a(n) = 2 + (2^(2*n-5)*Gamma(n - 3/2))/(sqrt(Pi)*Gamma(n-1)).
G.f.: (x^2*(1-x) + (4 + x^2 -x^3)*sqrt(1-4*x))/(2*(1-x)*sqrt(1-4*x)). - Eric W. Weisstein, Jul 29 2011