cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052482 a(n) = 2^(n-2)*binomial(n+1,2).

Original entry on oeis.org

3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784, 58384711680, 124822487040
Offset: 2

Views

Author

N. J. A. Sloane, Mar 16 2000

Keywords

Comments

Also the number of 4-cycles in the (n+1)-folded cube graph for n > 3. - Eric W. Weisstein, Mar 21 2018

Crossrefs

Essentially the same as A080929.
Cf. A301459 (6-cycles in the n-folded cube graph).

Programs

  • Mathematica
    Table[2^(n - 2) Binomial[n + 1, 2], {n, 2, 28}] (* Michael De Vlieger, Sep 21 2017 *)
    LinearRecurrence[{6, -12, 8}, {3, 12, 40}, 20] (* Eric W. Weisstein, Mar 21 2018 *)
    CoefficientList[Series[(-3 + 6 x - 4 x^2)/(-1 + 2 x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Mar 21 2018 *)
  • PARI
    Vec(x^2*(3 - 6*x + 4*x^2) / (1 - 2*x)^3 + O(x^40)) \\ Colin Barker, Sep 22 2017

Formula

a(n) = (1/2) * Sum_{k=0..n-1} Sum_{i=0..n-1} (k+1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Colin Barker, Sep 22 2017: (Start)
G.f.: x^2*(3 - 6*x + 4*x^2) / (1 - 2*x)^3.
a(n) = 2^(n-3)*n*(1 + n).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n>4.
(End)