A052482 a(n) = 2^(n-2)*binomial(n+1,2).
3, 12, 40, 120, 336, 896, 2304, 5760, 14080, 33792, 79872, 186368, 430080, 983040, 2228224, 5013504, 11206656, 24903680, 55050240, 121110528, 265289728, 578813952, 1258291200, 2726297600, 5888802816, 12683575296, 27246198784, 58384711680, 124822487040
Offset: 2
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Eric Weisstein's World of Mathematics, Folded Cube Graph
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Mathematica
Table[2^(n - 2) Binomial[n + 1, 2], {n, 2, 28}] (* Michael De Vlieger, Sep 21 2017 *) LinearRecurrence[{6, -12, 8}, {3, 12, 40}, 20] (* Eric W. Weisstein, Mar 21 2018 *) CoefficientList[Series[(-3 + 6 x - 4 x^2)/(-1 + 2 x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Mar 21 2018 *)
-
PARI
Vec(x^2*(3 - 6*x + 4*x^2) / (1 - 2*x)^3 + O(x^40)) \\ Colin Barker, Sep 22 2017
Formula
a(n) = (1/2) * Sum_{k=0..n-1} Sum_{i=0..n-1} (k+1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Colin Barker, Sep 22 2017: (Start)
G.f.: x^2*(3 - 6*x + 4*x^2) / (1 - 2*x)^3.
a(n) = 2^(n-3)*n*(1 + n).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n>4.
(End)
Comments