A052485 Weak numbers (i.e., not powerful (1)): there is a prime p where p|n is true but p^2|n is not true.
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a052485 n = a052485_list !! (n-1) a052485_list = filter ((== 0) . a112526) [1..] -- Reinhard Zumkeller, Sep 16 2011
-
Mathematica
Select[Range[1000], Min[FactorInteger[#][[All, 2]]] <= 1 &] (* Geoffrey Critzer, Feb 11 2015 *)
-
PARI
is(n)=n>1 && vecmin(factor(n)[,2])==1 \\ Charles R Greathouse IV, Mar 19 2014
-
PARI
is(n)=!ispowerful(n) \\ Charles R Greathouse IV, Sep 18 2015
-
Python
from math import isqrt from sympy import integer_nthroot, factorint def A052485(n): def f(x): return int(n+sum(isqrt(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Sep 10 2024
Formula
A112526(a(n)) = 0. - Reinhard Zumkeller, Sep 16 2011
a(n) ~ n. - Charles R Greathouse IV, Jul 19 2012
a(n) = n + O(sqrt(n)). - Charles R Greathouse IV, Jul 08 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - zeta(2*s)*zeta(3*s)/zeta(6*s), for s > 1. - Amiram Eldar, May 13 2023