cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052488 a(n) = floor(n*H(n)) where H(n) is the n-th harmonic number, Sum_{k=1..n} 1/k (A001008/A002805).

Original entry on oeis.org

1, 3, 5, 8, 11, 14, 18, 21, 25, 29, 33, 37, 41, 45, 49, 54, 58, 62, 67, 71, 76, 81, 85, 90, 95, 100, 105, 109, 114, 119, 124, 129, 134, 140, 145, 150, 155, 160, 165, 171, 176, 181, 187, 192, 197, 203, 208, 214, 219, 224, 230, 235, 241, 247, 252, 258, 263, 269
Offset: 1

Views

Author

Tomas Mario Kalmar (TomKalmar(AT)aol.com), Mar 15 2000

Keywords

Comments

Floor(n*H(n)) gives a (very) rough approximation to the n-th prime.
a(n) is the integer part of the solution to the Coupon Collector's Problem. For example, if there are n=4 different prizes to collect from cereal boxes and they are equally likely to be found, then the integer part of the average number of boxes to buy before the collection is complete is a(4)=8. - Ron Lalonde (ronronronlalonde(AT)hotmail.com), Feb 04 2004

References

  • John D. Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, Ch. 3, 'On the Cards', W. W. Norton & Co., NY & London, 2008, pp. 30-32.

Crossrefs

Programs

  • Magma
    [Floor(n*HarmonicNumber(n)): n in [1..60]]; // G. C. Greubel, May 14 2019
    
  • Maple
    for n from 1 to 100 do printf(`%d,`,floor(n*sum(1/k, k=1..n))) od:
    # Alternatively:
    A052488:= n -> floor(n*(Psi(n+1)+gamma));
    seq(A052488(n),n=1..100); # Robert Israel, May 19 2014
  • Mathematica
    f[n_] := Floor[n*HarmonicNumber[n]]; Array[f, 60] (* Robert G. Wilson v, Nov 23 2015 *)
  • PARI
    a(n) = floor(n*sum(k=1, n, 1/k)) \\ Altug Alkan, Nov 23 2015
    
  • Python
    from math import floor
    n=100 #number of terms
    ans=0
    finalans = []
    for i in range(1, n+1):
        ans+=(1/i)
        finalans.append(floor(ans*i))
    print(finalans)
    # Adam Hugill, Feb 14 2022
    
  • Python
    from fractions import Fraction
    from itertools import count, islice
    def agen():
        Hn = 0
        for n in count(1):
            Hn += Fraction(1, n)
            yield (n*Hn.numerator)//Hn.denominator
    print(list(islice(agen(), 60))) # Michael S. Branicky, Aug 10 2022
    
  • Python
    from sympy import harmonic
    def A052488(n): return int(n*harmonic(n)) # Chai Wah Wu, Oct 24 2023
  • Sage
    [floor(n*harmonic_number(n)) for n in (1..60)] # G. C. Greubel, May 14 2019
    

Extensions

More terms from James Sellers, Mar 17 2000