A052513 Number of labeled trees of height at most 3.
0, 1, 2, 9, 64, 505, 4536, 46249, 526352, 6604497, 90466480, 1341571561, 21392282088, 364715915161, 6616327512536, 127187163197865, 2581443127409056, 55143025567270561, 1236226458392407008, 29012548251081127753, 711157579030313374520, 18169564436494014726441
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 59
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x*Exp(x))) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019 -
Maple
spec := [S,{S=Prod(Z,Set(T1)), T2=Prod(Z,Set(T3)), T3=Z, T1=Prod(Z,Set(T2))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
nn=20;a=x Exp[x];b=x Exp[a];Range[0,nn]! CoefficientList[Series[x Exp[b],{x,0,nn}],x] (* Geoffrey Critzer, Sep 20 2012 *)
-
PARI
N=33; x='x+O('x^N); egf=x*exp(x*exp(x*exp(x))); v=Vec(serlaplace(egf)); vector(#v+1,n,if(n==1,0,v[n-1])) /* Joerg Arndt, Sep 15 2012 */
-
Sage
m = 20; T = taylor(x*exp(x*exp(x*exp(x))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
Formula
E.g.f.: x*exp(x*exp(x*exp(x))).