cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052521 Number of pairs of sequences of cardinality at least 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 120960, 1451520, 18144000, 239500800, 3353011200, 49816166400, 784604620800, 13076743680000, 230150688768000, 4268249137152000, 83230858174464000, 1703031405723648000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0,0,0], List([6..20], n-> (n-5)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 5 select 0 else (n-5)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,3 <= card), S=Prod(B,B)},labeled]: # Pairs spec
    seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    Table[If[n<6, 0, (n-5)*n!], {n,0,20}] (* G. C. Greubel, May 13 2019 *)
  • PARI
    {a(n) = if(n<6, 0, (n-5)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0,0,0]+[(n-5)*factorial(n) for n in (6..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^6/(1-x)^2.
(n-5)*a(n+1) + (4 + 3*n - n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 0, a(6) = 720.
a(n) = (n-5)*n!.
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=6} 1/a(n) = 5477/7200 - 17*e/60 - gamma/120 + Ei(1)/120 = 5477/7200 - (17/60)*A001113 - (1/120)*A001620 + A091725/120.
Sum_{n>=6} (-1)^n/a(n) = 403/7200 - 1/(6*e) + gamma/120 - Ei(-1)/120 = 403/7200 - (1/6)*A068985 + (1/120)*A001620 + (1/120)*A099285. (End)