cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282466 a(n) = n*a(n-1) + n!, with n>0, a(0)=5.

Original entry on oeis.org

5, 6, 14, 48, 216, 1200, 7920, 60480, 524160, 5080320, 54432000, 638668800, 8143027200, 112086374400, 1656387532800, 26153487360000, 439378587648000, 7825123418112000, 147254595231744000, 2919482409811968000, 60822550204416000000, 1328364496464445440000
Offset: 0

Views

Author

Bruno Berselli, Feb 22 2017

Keywords

References

  • C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), page 240 (Example 9.57 gives the recurrence).

Crossrefs

Cf. A229039.
Cf. sequences with formula (n + k)*n!: A052521 (k=-5), A282822 (k=-4), A052520 (k=-3), A052571 (k=-2), A062119 (k=-1), A001563 (k=0), A000142 (k=1), A001048 (k=2), A052572 (k=3), A052644 (k=4), this sequence (k=5).

Programs

  • Magma
    A282466:= func< n | (n+5)*Factorial(n) >; // G. C. Greubel, May 14 2025
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}] (* or *)
    Table[(n + 5) n!, {n, 0, 30}]
  • SageMath
    def A282466(n): return (n+5)*factorial(n) # G. C. Greubel, May 14 2025

Formula

E.g.f.: (5 - 4*x)/(1 - x)^2.
a(n) = (n + 5)*n!.
a(n) = 2*A229039(n) for n>0.
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = 9*e - 24.
Sum_{n>=0} (-1)^n/a(n) = 24 - 65/e. (End)

A324225 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 6, 4, 2, 6, 12, 18, 24, 18, 12, 6, 24, 48, 72, 96, 120, 96, 72, 48, 24, 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120, 720, 1440, 2160, 2880, 3600, 4320, 5040, 4320, 3600, 2880, 2160, 1440, 720, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 35280, 30240, 25200, 20160, 15120, 10080, 5040
Offset: 1

Views

Author

Alois P. Heinz, Feb 18 2019

Keywords

Comments

T(n,k) is the number of occurrences of k in all (signed) displacement lists [p(i)-i, i=1..n] of permutations p of [n].

Examples

			The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices
  [1    ]  [1    ]  [  1  ]  [  1  ]  [    1]  [    1]
  [  1  ]  [    1]  [1    ]  [    1]  [1    ]  [  1  ]
  [    1]  [  1  ]  [    1]  [1    ]  [  1  ]  [1    ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2].
Triangle T(n,k) begins:
  :                             1                           ;
  :                        1,   2,   1                      ;
  :                   2,   4,   6,   4,   2                 ;
  :              6,  12,  18,  24,  18,  12,   6            ;
  :        24,  48,  72,  96, 120,  96,  72,  48,  24       ;
  :  120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120  ;
		

Crossrefs

Columns k=0-6 give (offsets may differ): A000142, A001563, A062119, A052571, A052520, A282822, A052521.
Row sums give A001563.
T(n+1,n) gives A000142.
T(n+1,n-1) gives A052849.
T(n+1,n-2) gives A052560 for n>1.
Cf. A152883 (right half of this triangle without center column), A162608 (left half of this triangle), A306461, A324224.
Cf. A001710.

Programs

  • Maple
    b:= proc(s, c) option remember; (n-> `if`(n=0, c,
          add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)):
    seq(T(n), n=1..8);
    # second Maple program:
    egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1):
    T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1-n..n-1), n=1..8);
    # third Maple program:
    T:= (n, k)-> (t-> `if`(t
    				
  • Mathematica
    T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)

Formula

T(n,k) = T(n,-k).
T(n,k) = (n-t)*(n-1)! if t < n with t = |k|, T(n,k) = 0 otherwise.
T(n,k) = |k|! * A324224(n,k).
E.g.f. of column k: x^t/t * hypergeom([2, t], [t+1], x) with t = |k|+1.
|T(n,k)-T(n,k-1)| = (n-1)! for k = 1-n..n.
Sum_{k=0..n-1} T(n,k) = A001710(n+1).
Showing 1-2 of 2 results.