cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052527 Expansion of (1-x)/(1-x-x^2-x^3+x^4).

Original entry on oeis.org

1, 0, 1, 2, 2, 5, 8, 13, 24, 40, 69, 120, 205, 354, 610, 1049, 1808, 3113, 5360, 9232, 15897, 27376, 47145, 81186, 139810, 240765, 414616, 714005, 1229576, 2117432, 3646397, 6279400, 10813653, 18622018, 32068674, 55224945, 95101984
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

First differences of A116732 (shifted left 3 places). - R. J. Mathar, Nov 27 2011
a(n) is the number of ways to tile an n-board (a board with dimensions n X 1) using one type of domino, two types of straight tromino, and one type each of all other straight m-ominoes for m > 3. - Michael A. Allen, Sep 17 2020
Equivalently, a(n) is the number of compositions of n into parts >= 2 where there are two kinds of part 3. - Joerg Arndt, Sep 18 2020

Programs

  • GAP
    a:=[1,0,1,2];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] -a[n-4]; od; a; # G. C. Greubel, May 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-x^2-x^3+x^4) )); // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Union(Z,Sequence(Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{1,1,1,-1}, {1,0,1,2}, 40] (* G. C. Greubel, May 13 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1-x-x^2-x^3+x^4)) \\ G. C. Greubel, May 13 2019
    
  • Sage
    ((1-x)/(1-x-x^2-x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
    

Formula

G.f.: (1-x)/(1 - x - x^2 - x^3 + x^4).
a(n) = a(n+1) +a(n+2) +a(n+3) -a(n+4), a(0)=1, a(1)=0, a(2)=1, a(3)=2.
a(n) = Sum_{alpha = RootOf(1-x-x^2-x^3+x^4)} (1/39)*(2 + 11*alpha - 4*alpha^2 - alpha^3)*alpha^(-1-n).

Extensions

More terms from James Sellers, Jun 05 2000