A052536 Number of compositions of n when parts 1 and 2 are of two kinds.
1, 2, 6, 17, 49, 141, 406, 1169, 3366, 9692, 27907, 80355, 231373, 666212, 1918281, 5523470, 15904198, 45794313, 131859469, 379674209, 1093228314, 3147825473, 9063802210, 26098178316, 75146709475, 216376326215, 623030800329
Offset: 0
Examples
a(2)=6 because we have (2),(2'),(1,1),(1,1'),(1',1) and (1',1').
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2177
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 467
- Index entries for linear recurrences with constant coefficients, signature (3,0,-1).
Programs
-
Maple
spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Sequence(Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 6; a[n_] := a[n] = 3*a[n-1] - a[n-3]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jun 12 2013, after Emeric Deutsch *)
-
PARI
Vec((1-x)/(1-3*x+x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011
Formula
G.f.: (1-x)/(1 - 3*x + x^3).
G.f.: 1/(1 - (2*x + 2*x^2 + Sum_{j>=3} x^j)). - Joerg Arndt, Jul 06 2011
a(n) = Sum(-(1/9)*(-2 + r^2 - r)*r^(-1-n)), r = RootOf(1 - 3*x + x^3).
a(0)=1, a(1)=2, a(2)=6, a(n) = 3*a(n-1) - a(n-3) for n >= 3. - Emeric Deutsch, Apr 10 2005
a(n) = left term in M^n * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term in M^n *[1 0 0] is a(n-1); middle term is A076264(n-1). - Gary W. Adamson, Sep 05 2005
3*a(n) = A123891(n+1). - Jeffrey R. Goodwin, Jul 03 2011
Extensions
More terms from James Sellers, Jun 06 2000
Edited by Emeric Deutsch, Apr 10 2005
More terms from Gary W. Adamson, Sep 05 2005
Comments