cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052536 Number of compositions of n when parts 1 and 2 are of two kinds.

Original entry on oeis.org

1, 2, 6, 17, 49, 141, 406, 1169, 3366, 9692, 27907, 80355, 231373, 666212, 1918281, 5523470, 15904198, 45794313, 131859469, 379674209, 1093228314, 3147825473, 9063802210, 26098178316, 75146709475, 216376326215, 623030800329
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1 - Sum_{j>=1} k_j * x^j). - Joerg Arndt, Jul 06 2011

Examples

			a(2)=6 because we have (2),(2'),(1,1),(1,1'),(1',1) and (1',1').
		

Crossrefs

Row sums of A105478.

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Sequence(Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 6; a[n_] := a[n] = 3*a[n-1] - a[n-3]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jun 12 2013, after Emeric Deutsch *)
  • PARI
    Vec((1-x)/(1-3*x+x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011

Formula

G.f.: (1-x)/(1 - 3*x + x^3).
G.f.: 1/(1 - (2*x + 2*x^2 + Sum_{j>=3} x^j)). - Joerg Arndt, Jul 06 2011
a(n) = Sum(-(1/9)*(-2 + r^2 - r)*r^(-1-n)), r = RootOf(1 - 3*x + x^3).
a(0)=1, a(1)=2, a(2)=6, a(n) = 3*a(n-1) - a(n-3) for n >= 3. - Emeric Deutsch, Apr 10 2005
a(n) = left term in M^n * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term in M^n *[1 0 0] is a(n-1); middle term is A076264(n-1). - Gary W. Adamson, Sep 05 2005
3*a(n) = A123891(n+1). - Jeffrey R. Goodwin, Jul 03 2011

Extensions

More terms from James Sellers, Jun 06 2000
Edited by Emeric Deutsch, Apr 10 2005
More terms from Gary W. Adamson, Sep 05 2005