cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102760 Number of partitions of n-set into "lists", in which every even list appears an even number of times, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 37, 241, 1381, 13231, 140617, 1483777, 16211881, 217551511, 3384215341, 50221272817, 782154787597, 13913712591871, 272739557719441, 5282625708305281, 106588332600443857, 2354480141600267047, 56238135934525073461, 1338131691952924913521
Offset: 0

Views

Author

Vladeta Jovovic, Feb 10 2005

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(i::even and j::odd, 0, b(n-i*j, i-1)*
          multinomial(n, n-i*j, i$j)/j!*i!^j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[EvenQ[i] && OddQ[j], 0, b[n-i*j, i- 1] * multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!*i!^j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)

Formula

E.g.f.: exp(x/(1-x^2))*Product_{k>0} cosh(x^(2*k)).

Extensions

a(0)=1 prepended by Alois P. Heinz, May 10 2016
Showing 1-1 of 1 results.