A052670 Expansion of e.g.f. x^2/(1-4*x).
0, 0, 2, 24, 384, 7680, 184320, 5160960, 165150720, 5945425920, 237817036800, 10463949619200, 502269581721600, 26118018249523200, 1462609021973299200, 87756541318397952000, 5616418644377468928000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 618
Programs
-
Magma
[0,0] cat [4^(n-2)*Factorial(n): n in [2..30]]; // G. C. Greubel, Jun 13 2022
-
Maple
spec := [S,{S=Prod(Z,Z,Sequence(Union(Z,Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
With[{nn=20},CoefficientList[Series[x^2/(1-4x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 27 2015 *)
-
SageMath
[(4^(n-2) - 4^(n-2)*bool(n<2))*factorial(n) for n in (0..30)] # G. C. Greubel, Jun 13 2022
Formula
E.g.f.: x^2/(1 - 4*x)
Recurrence: a(0)=0, a(1)=0, a(2)=2, a(n) = 4*n*a(n-1).
a(n) = 4^(n-2) * n!, n>1.
G.f.: 2*x^2*Hypergeometric2F0([3,1], [], 4*x). - G. C. Greubel, Jun 13 2022